Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 35(1): 16-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773094

ABSTRACT

This study determined the influence and ideal ratios of various coconut oil (CO) amounts in gelatin (G) based-films as wound dressings since there are limited comparative studies to evaluate the sole effect of increasing CO on protein-based biomaterials. Homogenous films at G:CO ratio of 4:0,4:2,4:3,4:4 (w:w) corresponding to CO-0, CO-2, CO-3, CO-4, respectively, were obtained using solution casting. SEM showed CO caused rougher surfaces decreasing mechanical strength. However, no pores were observed in CO-4 due to bigger clusters of oil improving stretchability compared to CO-3; and durability since aging of CO-4 was >10% lower than CO-0 in aqueous media. FTIR showed triglycerides' band only in CO films with increasing amplitude. Moreover, amide-I of CO-2 was involved in more hydrogen bonding, therefore, CO-2 had the highest melt-like transition temperatures (Tmax) at ∼163 °C while others' were at ∼133 °C; and had more ideal mechanical properties among CO films. XTT showed that increased CO improved 3T3 cell viability as CO-0 significantly decreased viability at 10,50,75,100 µg/mL (p < 0.05), whereas CO-2 and CO-3 within 5-75 µg/mL and CO-4 within 5-100 µg/mL range increased viability ≥100% suggesting proliferation. All CO samples at 25 µg/mL stimulated 3T3 cell migration in Scratch Assay indicating wound healing. CO amounts mainly improved thermal and healing properties of gelatin-based biomaterial. CO-2 was more thermally stable and CO-4 had better influence on cell viability and wound healing than CO-0. Therefore, increased CO ratios, specifically 4:2 and 4:4, G:CO (w:w), in gelatin-based films can be ideal candidates for wound dressing materials.


Subject(s)
Biocompatible Materials , Gelatin , Mice , Animals , Biocompatible Materials/pharmacology , Coconut Oil , Bandages , 3T3 Cells
2.
Biomed Mater ; 17(4)2022 05 18.
Article in English | MEDLINE | ID: mdl-35504270

ABSTRACT

The influence of coconut oil (CO) on a gelatin-based film was investigated when used as a potential wound dressing material. There is limited study on CO in protein-based wound dressing materials. Therefore, in this study a self-supporting, continuous and homogenous CO incorporated gelatin-based film was formulated and obtained by solution casting method. The influence of CO on physicochemical and thermal properties of gelatin-based film was also determined. Moreover, the effect CO in gelatin films on cell viability and cell migration was analysed with a preliminary cell culture study. Homogenous dispersion of 10% (w/w) CO was obtained in films when 3% (v/w) Tween 80, a surfactant, was incorporated to 20% (w/w) plasticized gelatin film forming solution. Effect of CO on gelatin-based film was observed via phase separation by scanning electron microscopy analysis. Water uptake of gelatin film with no CO, GE film; and 10% (w/w) CO incorporated GE film, GE-CO, were 320% and 210%, respectively, after 3 h in water. Fourier transform infrared spectroscopy analysis showed triglyceride component of CO and increased hydrogen bonding between NH groups of gelatin in GE-CO films. Differential scanning calorimetry results suggested a more ordered structure of GE-CO film due to an increase in melt-like transition temperature and melting enthalpy of GE-CO film. CO content also increased cell viability, assessed by XTT assay since cell viability was approximately 100% when L929 cell culture was incubated with GE-CO of 5-100 µg ml-1. Moreover, GE-CO samples within 5-25 µg ml-1concentration range, increased proliferation of L929 cells since cell viability was significantly higher than the 100% viable cell culture control (P< 0.05) which is also an indication of efficient healing. However, GE decreased viability of L929 cells significantly at 100-10 µg ml-1concentration range (P< 0.05) and were toxic at concentrations of 100, 75 and 50 µg ml-1which decreased ∼50% of the viability of the cells. Scratch Assay to assessin vitrowound healing showed cell migration towards scratch after 24 h as an indication of wound healing only in GE-CO samples. This study showed that, CO could efficiently be added to gelatin-based films for preparation of a primary wound dressing biomaterial which is also demonstrated to have a promising wound healing effect for minor wounds.


Subject(s)
Bandages , Gelatin , Coconut Oil , Gelatin/chemistry , Water/chemistry
3.
Int J Biol Macromol ; 187: 732-741, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34358596

ABSTRACT

Poly(lactic acid) (PLA), a bio-based polyester, has been extensively investigated in the recent past owing to its excellent mechanical properties. Several studies have been conducted on PLA blends, with a focus on improving the brittleness of PLA to ensure its suitability for various applications. However, the increasing use of PLA has increased the contamination of PLA-based products in the environment because PLA remains intact even after three years at sea or in soil. This review focuses on analyzing studies that have worked on improving the degradation properties of PLA blends and studies how other additives affect degradation by considering different degradation media. Factors affecting the degradation properties, such as surface morphology, water uptake, and crystallinity of PLA blends, are highlighted. In natural, biotic, and abiotic media, water uptake plays a crucial role in determining biodegradation rates. Immiscible blends of PLA with other polymer matrices cause phase separation, increasing the water absorption. The susceptibility of PLA to hydrolytic and enzymatic degradation is high in the amorphous region because it can be easily penetrated by water. It is essential to study the morphology, water absorption, and structural properties of PLA blends to predict the biodegradation properties of PLA in the blends.


Subject(s)
Enzymes/chemistry , Polyesters/chemistry , Polymers/chemistry , Water/chemistry , Hydrolysis , Kinetics
4.
J Agric Food Chem ; 55(26): 10685-91, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18038981

ABSTRACT

Composite film production based on cotton stalk xylan was studied, and the mechanical and physical properties of the films formed were investigated. Xylan and lignin were separated from cellulose by alkali extraction and, then, lignin was removed using ethanol washing. Self-supporting continuous films could not be produced using pure cotton stalk xylan. However, film formation was achieved using 8-14% (w/w) xylan without complete removal of lignin during xylan isolation. Keeping about 1% lignin in xylan (w/w) was determined to be sufficient for film formation. Films were produced by casting the film-forming solutions, followed by solvent evaporation in a temperature (20 degrees C) and relative humidity (40%) controlled environment. The elastic modulus and hypothetical coating strength of the films obtained by using 8% xylan were significantly different from the ones containing 10-14% xylan. The water vapor transfer rates (WVTR) decreased with increasing xylan concentration, which made the films thicker. The glycerol addition as an additional plasticizer resulting in more stretchable films having higher WVTR and lower water solubility values. As a result, film production was successfully achieved from xylan, which was extracted from an agricultural waste (cotton stalk), and the film-forming effect of lignin on pure xylan has been demonstrated.


Subject(s)
Food Packaging/instrumentation , Gossypium/chemistry , Xylans/chemistry , Chemical Phenomena , Chemistry, Physical , Glycerol , Mechanics , Plant Stems/chemistry , Plasticizers , Xylans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...